3.2862 \(\int \frac{c+d x}{a+b (c+d x)^3} \, dx\)

Optimal. Leaf size=140 \[ \frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 \sqrt [3]{a} b^{2/3} d}-\frac{\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3} d}-\frac{\tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} \sqrt [3]{a} b^{2/3} d} \]

[Out]

-(ArcTan[(a^(1/3) - 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3))]/(Sqrt[3]*a^(1/3)*b^(2/3)*d)) - Log[a^(1/3) + b^(1/
3)*(c + d*x)]/(3*a^(1/3)*b^(2/3)*d) + Log[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2]/(6*a^(1/3
)*b^(2/3)*d)

________________________________________________________________________________________

Rubi [A]  time = 0.113913, antiderivative size = 140, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.368, Rules used = {372, 292, 31, 634, 617, 204, 628} \[ \frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 \sqrt [3]{a} b^{2/3} d}-\frac{\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3} d}-\frac{\tan ^{-1}\left (\frac{\sqrt [3]{a}-2 \sqrt [3]{b} (c+d x)}{\sqrt{3} \sqrt [3]{a}}\right )}{\sqrt{3} \sqrt [3]{a} b^{2/3} d} \]

Antiderivative was successfully verified.

[In]

Int[(c + d*x)/(a + b*(c + d*x)^3),x]

[Out]

-(ArcTan[(a^(1/3) - 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3))]/(Sqrt[3]*a^(1/3)*b^(2/3)*d)) - Log[a^(1/3) + b^(1/
3)*(c + d*x)]/(3*a^(1/3)*b^(2/3)*d) + Log[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2]/(6*a^(1/3
)*b^(2/3)*d)

Rule 372

Int[(u_)^(m_.)*((a_) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Dist[u^m/(Coefficient[v, x, 1]*v^m), Subst[Int[x^m
*(a + b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, m, n, p}, x] && LinearPairQ[u, v, x]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{c+d x}{a+b (c+d x)^3} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x}{a+b x^3} \, dx,x,c+d x\right )}{d}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{a}+\sqrt [3]{b} x} \, dx,x,c+d x\right )}{3 \sqrt [3]{a} \sqrt [3]{b} d}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt [3]{a}+\sqrt [3]{b} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{3 \sqrt [3]{a} \sqrt [3]{b} d}\\ &=-\frac{\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3} d}+\frac{\operatorname{Subst}\left (\int \frac{-\sqrt [3]{a} \sqrt [3]{b}+2 b^{2/3} x}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{6 \sqrt [3]{a} b^{2/3} d}+\frac{\operatorname{Subst}\left (\int \frac{1}{a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2} \, dx,x,c+d x\right )}{2 \sqrt [3]{b} d}\\ &=-\frac{\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3} d}+\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 \sqrt [3]{a} b^{2/3} d}+\frac{\operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}\right )}{\sqrt [3]{a} b^{2/3} d}\\ &=-\frac{\tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{b} (c+d x)}{\sqrt [3]{a}}}{\sqrt{3}}\right )}{\sqrt{3} \sqrt [3]{a} b^{2/3} d}-\frac{\log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )}{3 \sqrt [3]{a} b^{2/3} d}+\frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )}{6 \sqrt [3]{a} b^{2/3} d}\\ \end{align*}

Mathematica [A]  time = 0.0127219, size = 114, normalized size = 0.81 \[ \frac{\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} (c+d x)+b^{2/3} (c+d x)^2\right )-2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} (c+d x)\right )+2 \sqrt{3} \tan ^{-1}\left (\frac{2 \sqrt [3]{b} (c+d x)-\sqrt [3]{a}}{\sqrt{3} \sqrt [3]{a}}\right )}{6 \sqrt [3]{a} b^{2/3} d} \]

Antiderivative was successfully verified.

[In]

Integrate[(c + d*x)/(a + b*(c + d*x)^3),x]

[Out]

(2*Sqrt[3]*ArcTan[(-a^(1/3) + 2*b^(1/3)*(c + d*x))/(Sqrt[3]*a^(1/3))] - 2*Log[a^(1/3) + b^(1/3)*(c + d*x)] + L
og[a^(2/3) - a^(1/3)*b^(1/3)*(c + d*x) + b^(2/3)*(c + d*x)^2])/(6*a^(1/3)*b^(2/3)*d)

________________________________________________________________________________________

Maple [C]  time = 0.001, size = 76, normalized size = 0.5 \begin{align*}{\frac{1}{3\,bd}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{3}b{d}^{3}+3\,{{\it \_Z}}^{2}bc{d}^{2}+3\,{\it \_Z}\,b{c}^{2}d+b{c}^{3}+a \right ) }{\frac{ \left ({\it \_R}\,d+c \right ) \ln \left ( x-{\it \_R} \right ) }{{d}^{2}{{\it \_R}}^{2}+2\,cd{\it \_R}+{c}^{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x+c)/(a+b*(d*x+c)^3),x)

[Out]

1/3/b/d*sum((_R*d+c)/(_R^2*d^2+2*_R*c*d+c^2)*ln(x-_R),_R=RootOf(_Z^3*b*d^3+3*_Z^2*b*c*d^2+3*_Z*b*c^2*d+b*c^3+a
))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{d x + c}{{\left (d x + c\right )}^{3} b + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(a+b*(d*x+c)^3),x, algorithm="maxima")

[Out]

integrate((d*x + c)/((d*x + c)^3*b + a), x)

________________________________________________________________________________________

Fricas [A]  time = 1.61503, size = 1065, normalized size = 7.61 \begin{align*} \left [\frac{3 \, \sqrt{\frac{1}{3}} a b \sqrt{\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}} \log \left (\frac{2 \, b^{2} d^{3} x^{3} + 6 \, b^{2} c d^{2} x^{2} + 6 \, b^{2} c^{2} d x + 2 \, b^{2} c^{3} - a b + 3 \, \sqrt{\frac{1}{3}}{\left (a b d x + a b c + 2 \,{\left (d^{2} x^{2} + 2 \, c d x + c^{2}\right )} \left (-a b^{2}\right )^{\frac{2}{3}} + \left (-a b^{2}\right )^{\frac{1}{3}} a\right )} \sqrt{\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}} - 3 \, \left (-a b^{2}\right )^{\frac{2}{3}}{\left (d x + c\right )}}{b d^{3} x^{3} + 3 \, b c d^{2} x^{2} + 3 \, b c^{2} d x + b c^{3} + a}\right ) + \left (-a b^{2}\right )^{\frac{2}{3}} \log \left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + b^{2} c^{2} + \left (-a b^{2}\right )^{\frac{1}{3}}{\left (b d x + b c\right )} + \left (-a b^{2}\right )^{\frac{2}{3}}\right ) - 2 \, \left (-a b^{2}\right )^{\frac{2}{3}} \log \left (b d x + b c - \left (-a b^{2}\right )^{\frac{1}{3}}\right )}{6 \, a b^{2} d}, \frac{6 \, \sqrt{\frac{1}{3}} a b \sqrt{-\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}} \arctan \left (\frac{\sqrt{\frac{1}{3}}{\left (2 \, b d x + 2 \, b c + \left (-a b^{2}\right )^{\frac{1}{3}}\right )} \sqrt{-\frac{\left (-a b^{2}\right )^{\frac{1}{3}}}{a}}}{b}\right ) + \left (-a b^{2}\right )^{\frac{2}{3}} \log \left (b^{2} d^{2} x^{2} + 2 \, b^{2} c d x + b^{2} c^{2} + \left (-a b^{2}\right )^{\frac{1}{3}}{\left (b d x + b c\right )} + \left (-a b^{2}\right )^{\frac{2}{3}}\right ) - 2 \, \left (-a b^{2}\right )^{\frac{2}{3}} \log \left (b d x + b c - \left (-a b^{2}\right )^{\frac{1}{3}}\right )}{6 \, a b^{2} d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(a+b*(d*x+c)^3),x, algorithm="fricas")

[Out]

[1/6*(3*sqrt(1/3)*a*b*sqrt((-a*b^2)^(1/3)/a)*log((2*b^2*d^3*x^3 + 6*b^2*c*d^2*x^2 + 6*b^2*c^2*d*x + 2*b^2*c^3
- a*b + 3*sqrt(1/3)*(a*b*d*x + a*b*c + 2*(d^2*x^2 + 2*c*d*x + c^2)*(-a*b^2)^(2/3) + (-a*b^2)^(1/3)*a)*sqrt((-a
*b^2)^(1/3)/a) - 3*(-a*b^2)^(2/3)*(d*x + c))/(b*d^3*x^3 + 3*b*c*d^2*x^2 + 3*b*c^2*d*x + b*c^3 + a)) + (-a*b^2)
^(2/3)*log(b^2*d^2*x^2 + 2*b^2*c*d*x + b^2*c^2 + (-a*b^2)^(1/3)*(b*d*x + b*c) + (-a*b^2)^(2/3)) - 2*(-a*b^2)^(
2/3)*log(b*d*x + b*c - (-a*b^2)^(1/3)))/(a*b^2*d), 1/6*(6*sqrt(1/3)*a*b*sqrt(-(-a*b^2)^(1/3)/a)*arctan(sqrt(1/
3)*(2*b*d*x + 2*b*c + (-a*b^2)^(1/3))*sqrt(-(-a*b^2)^(1/3)/a)/b) + (-a*b^2)^(2/3)*log(b^2*d^2*x^2 + 2*b^2*c*d*
x + b^2*c^2 + (-a*b^2)^(1/3)*(b*d*x + b*c) + (-a*b^2)^(2/3)) - 2*(-a*b^2)^(2/3)*log(b*d*x + b*c - (-a*b^2)^(1/
3)))/(a*b^2*d)]

________________________________________________________________________________________

Sympy [A]  time = 0.247627, size = 29, normalized size = 0.21 \begin{align*} \frac{\operatorname{RootSum}{\left (27 t^{3} a b^{2} + 1, \left ( t \mapsto t \log{\left (x + \frac{9 t^{2} a b + c}{d} \right )} \right )\right )}}{d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(a+b*(d*x+c)**3),x)

[Out]

RootSum(27*_t**3*a*b**2 + 1, Lambda(_t, _t*log(x + (9*_t**2*a*b + c)/d)))/d

________________________________________________________________________________________

Giac [A]  time = 1.15795, size = 190, normalized size = 1.36 \begin{align*} -\frac{1}{3} \, \sqrt{3} \left (-\frac{1}{a b^{2} d^{3}}\right )^{\frac{1}{3}} \arctan \left (\frac{\sqrt{3}{\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac{2}{3}}\right )}}{3 \, \left (-a^{2} b\right )^{\frac{2}{3}}}\right ) - \frac{1}{6} \, \left (-\frac{1}{a b^{2} d^{3}}\right )^{\frac{1}{3}} \log \left ({\left (2 \, a b d x + 2 \, a b c - \left (-a^{2} b\right )^{\frac{2}{3}}\right )}^{2} + 3 \, \left (-a^{2} b\right )^{\frac{4}{3}}\right ) + \frac{1}{3} \, \left (-\frac{1}{a b^{2} d^{3}}\right )^{\frac{1}{3}} \log \left ({\left | a b d x + a b c + \left (-a^{2} b\right )^{\frac{2}{3}} \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x+c)/(a+b*(d*x+c)^3),x, algorithm="giac")

[Out]

-1/3*sqrt(3)*(-1/(a*b^2*d^3))^(1/3)*arctan(1/3*sqrt(3)*(2*a*b*d*x + 2*a*b*c - (-a^2*b)^(2/3))/(-a^2*b)^(2/3))
- 1/6*(-1/(a*b^2*d^3))^(1/3)*log((2*a*b*d*x + 2*a*b*c - (-a^2*b)^(2/3))^2 + 3*(-a^2*b)^(4/3)) + 1/3*(-1/(a*b^2
*d^3))^(1/3)*log(abs(a*b*d*x + a*b*c + (-a^2*b)^(2/3)))